Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Adicionar filtros

Assunto principal
Tipo de documento
Intervalo de ano
1.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.12.04.22283074

RESUMO

Colleges and universities in the US struggled to provide safe in-person education throughout the COVID-19 pandemic. Testing coupled with isolation is a nimble intervention strategy that can be tailored to mitigate health and economic costs, as the virus and our arsenal of medical countermeasures continue to evolve. We developed a decision-support tool to aid in the design of university-based testing strategies using a mathematical model of SARS-CoV-2 transmission. Applying this framework to a large public university reopening in the fall of 2021 with a 60% student vaccination rate, we find that the optimal strategy, in terms of health and economic costs, is twice weekly antigen testing of all students. This strategy provides a 95% guarantee that, throughout the fall semester, case counts would not exceed the CDCs original high transmission threshold of 100 cases per 100k persons over 7 days. As the virus and our medical armament continue to evolve, testing will remain a flexible tool for managing risks and keeping campuses open. We have implemented this model as an online tool to facilitate the design of testing strategies that adjust for COVID-19 conditions, university-specific parameters, and institutional goals.


Assuntos
COVID-19
2.
arxiv; 2022.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2203.00136v1

RESUMO

In August 2020, as Texas was coming down from a large summer COVID-19 surge, forecasts suggested that Hurricane Laura was tracking towards 6M residents along the East Texas coastline, threatening to spread COVID-19 across the state and cause pandemic resurgences. To assist local authorities facing the dual-threat, we integrated survey expectations of coastal residents and observed hurricane evacuation rates in a statistical framework that combined with local pandemic conditions predicts how COVID-19 would spread in response to a hurricane. For Hurricane Laura, we estimate that 499,500 [90% Credible Interval (CI): 347,500, 624,000] people evacuated the Texan counties, that no single county accumulated more than 2.5% of hurricane evacuees, and that there were 2,900 [90% CI: 1,700, 5,800] exportations of Covid-19 across the state. In general, reception estimates were concentrated in regions with higher population densities. Nonetheless, higher importation risk is expected in small Districts, with a maximum number of importations of 10 per 10,000 residents in our case study. Overall, we present a flexible and transferable framework that captures spatial heterogeneity and incorporates geographic components for predicting population movement in the wake of a natural disaster. As hurricanes continue to increase in both frequency and strength, our framework can be deployed in response to anticipated hurricane paths to guide disaster preparedness and planning.


Assuntos
COVID-19
3.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.01.14.22268821

RESUMO

We estimated the probability of undetected emergence of the SARS-CoV-2 Omicron variant in 25 low and middle-income countries (LMICs) prior to December 5, 2021. In nine countries, the risk exceeds 50%; in Turkey, Pakistan and the Philippines, it exceeds 99%. Risks are generally lower in the Americas than Europe or Asia.

4.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.04.26.21256136

RESUMO

Claims that in-person schooling has not amplified SARS-CoV-2 transmission are based on similar infection rates in schools and their surrounding communities and limited numbers of documented in-school transmission events. Simulations assuming high in-school transmission suggest that these metrics cannot exclude the possibility that transmission in schools exacerbated overall pandemic risks.

5.
Estee Y Cramer; Evan L Ray; Velma K Lopez; Johannes Bracher; Andrea Brennen; Alvaro J Castro Rivadeneira; Aaron Gerding; Tilmann Gneiting; Katie H House; Yuxin Huang; Dasuni Jayawardena; Abdul H Kanji; Ayush Khandelwal; Khoa Le; Anja Muhlemann; Jarad Niemi; Apurv Shah; Ariane Stark; Yijin Wang; Nutcha Wattanachit; Martha W Zorn; Youyang Gu; Sansiddh Jain; Nayana Bannur; Ayush Deva; Mihir Kulkarni; Srujana Merugu; Alpan Raval; Siddhant Shingi; Avtansh Tiwari; Jerome White; Spencer Woody; Maytal Dahan; Spencer Fox; Kelly Gaither; Michael Lachmann; Lauren Ancel Meyers; James G Scott; Mauricio Tec; Ajitesh Srivastava; Glover E George; Jeffrey C Cegan; Ian D Dettwiller; William P England; Matthew W Farthing; Robert H Hunter; Brandon Lafferty; Igor Linkov; Michael L Mayo; Matthew D Parno; Michael A Rowland; Benjamin D Trump; Sabrina M Corsetti; Thomas M Baer; Marisa C Eisenberg; Karl Falb; Yitao Huang; Emily T Martin; Ella McCauley; Robert L Myers; Tom Schwarz; Daniel Sheldon; Graham Casey Gibson; Rose Yu; Liyao Gao; Yian Ma; Dongxia Wu; Xifeng Yan; Xiaoyong Jin; Yu-Xiang Wang; YangQuan Chen; Lihong Guo; Yanting Zhao; Quanquan Gu; Jinghui Chen; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Hannah Biegel; Joceline Lega; Timothy L Snyder; Davison D Wilson; Steve McConnell; Yunfeng Shi; Xuegang Ban; Robert Walraven; Qi-Jun Hong; Stanley Kong; James A Turtle; Michal Ben-Nun; Pete Riley; Steven Riley; Ugur Koyluoglu; David DesRoches; Bruce Hamory; Christina Kyriakides; Helen Leis; John Milliken; Michael Moloney; James Morgan; Gokce Ozcan; Chris Schrader; Elizabeth Shakhnovich; Daniel Siegel; Ryan Spatz; Chris Stiefeling; Barrie Wilkinson; Alexander Wong; Sean Cavany; Guido Espana; Sean Moore; Rachel Oidtman; Alex Perkins; Zhifeng Gao; Jiang Bian; Wei Cao; Juan Lavista Ferres; Chaozhuo Li; Tie-Yan Liu; Xing Xie; Shun Zhang; Shun Zheng; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Ana Pastore y Piontti; Xinyue Xiong; Andrew Zheng; Jackie Baek; Vivek Farias; Andreea Georgescu; Retsef Levi; Deeksha Sinha; Joshua Wilde; Nicolas D Penna; Leo A Celi; Saketh Sundar; Dave Osthus; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dean Karlen; Elizabeth C Lee; Juan Dent; Kyra H Grantz; Joshua Kaminsky; Kathryn Kaminsky; Lindsay T Keegan; Stephen A Lauer; Joseph C Lemaitre; Justin Lessler; Hannah R Meredith; Javier Perez-Saez; Sam Shah; Claire P Smith; Shaun A Truelove; Josh Wills; Matt Kinsey; RF Obrecht; Katharine Tallaksen; John C. Burant; Lily Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Xinyi Li; Guannan Wang; Yueying Wang; Shan Yu; Robert C Reiner; Ryan Barber; Emmanuela Gaikedu; Simon Hay; Steve Lim; Chris Murray; David Pigott; B. Aditya Prakash; Bijaya Adhikari; Jiaming Cui; Alexander Rodriguez; Anika Tabassum; Jiajia Xie; Pinar Keskinocak; John Asplund; Arden Baxter; Buse Eylul Oruc; Nicoleta Serban; Sercan O Arik; Mike Dusenberry; Arkady Epshteyn; Elli Kanal; Long T Le; Chun-Liang Li; Tomas Pfister; Dario Sava; Rajarishi Sinha; Thomas Tsai; Nate Yoder; Jinsung Yoon; Leyou Zhang; Sam Abbott; Nikos I I Bosse; Sebastian Funk; Joel Hellewell; Sophie R Meakin; James D Munday; Katharine Sherratt; Mingyuan Zhou; Rahi Kalantari; Teresa K Yamana; Sen Pei; Jeffrey Shaman; Turgay Ayer; Madeline Adee; Jagpreet Chhatwal; Ozden O Dalgic; Mary A Ladd; Benjamin P Linas; Peter Mueller; Jade Xiao; Michael L Li; Dimitris Bertsimas; Omar Skali Lami; Saksham Soni; Hamza Tazi Bouardi; Yuanjia Wang; Qinxia Wang; Shanghong Xie; Donglin Zeng; Alden Green; Jacob Bien; Addison J Hu; Maria Jahja; Balasubramanian Narasimhan; Samyak Rajanala; Aaron Rumack; Noah Simon; Ryan Tibshirani; Rob Tibshirani; Valerie Ventura; Larry Wasserman; Eamon B O'Dea; John M Drake; Robert Pagano; Jo W Walker; Rachel B Slayton; Michael Johansson; Matthew Biggerstaff; Nicholas G Reich.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.02.03.21250974

RESUMO

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. In 2020, the COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized hundreds of thousands of specific predictions from more than 50 different academic, industry, and independent research groups. This manuscript systematically evaluates 23 models that regularly submitted forecasts of reported weekly incident COVID-19 mortality counts in the US at the state and national level. One of these models was a multi-model ensemble that combined all available forecasts each week. The performance of individual models showed high variability across time, geospatial units, and forecast horizons. Half of the models evaluated showed better accuracy than a naive baseline model. In combining the forecasts from all teams, the ensemble showed the best overall probabilistic accuracy of any model. Forecast accuracy degraded as models made predictions farther into the future, with probabilistic accuracy at a 20-week horizon more than 5 times worse than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. f


Assuntos
COVID-19
6.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.01.18.21250071

RESUMO

As COVID-19 vaccination begins worldwide, policymakers face critical trade-offs. Using a mathematical model of COVID-19 transmission, we find that timing of the rollout is expected to have a substantially greater impact on mortality than risk-based prioritization and adherence and that prioritizing first doses over second doses may be life saving.


Assuntos
COVID-19
7.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.11.26.20152520

RESUMO

Community mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including Frances ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.


Assuntos
COVID-19
8.
arxiv; 2020.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2010.10560v1

RESUMO

The year 2020 has seen the COVID-19 virus lead to one of the worst global pandemics in history. As a result, governments around the world are faced with the challenge of protecting public health, while keeping the economy running to the greatest extent possible. Epidemiological models provide insight into the spread of these types of diseases and predict the effects of possible intervention policies. However, to date,the even the most data-driven intervention policies rely on heuristics. In this paper, we study how reinforcement learning (RL) can be used to optimize mitigation policies that minimize the economic impact without overwhelming the hospital capacity. Our main contributions are (1) a novel agent-based pandemic simulator which, unlike traditional models, is able to model fine-grained interactions among people at specific locations in a community; and (2) an RL-based methodology for optimizing fine-grained mitigation policies within this simulator. Our results validate both the overall simulator behavior and the learned policies under realistic conditions.


Assuntos
COVID-19
9.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.05.03.20089920

RESUMO

As the first wave of COVID-19 recedes, policymakers are contemplating the relaxation of shelter-in-place orders. Using a model capturing high-risk populations and transmission rates estimated from hospitalization data, we find that postponing relaxation will only delay a second wave and cocooning vulnerable populations is needed to prevent overwhelming medical surges.


Assuntos
COVID-19
10.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.04.16.20068163

RESUMO

We propose a Bayesian model for projecting first-wave COVID-19 deaths in all 50 U.S. states. Our model's projections are based on data derived from mobile-phone GPS traces, which allows us to estimate how social-distancing behavior is "flattening the curve" in each state. In a two-week look-ahead test of out-of-sample forecasting accuracy, our model significantly outperforms the widely used model from the Institute for Health Metrics and Evaluation (IHME), achieving 42% lower prediction error: 13.2 deaths per day average error across all U.S. states, versus 22.8 deaths per day average error for the IHME model. Our model also provides an accurate, if slightly conservative, assessment of forecasting accuracy: in the same look-ahead test, 98% of data points fell within the model's 95% credible intervals. Our model's projections are updated daily at https://covid-19. tacc.utexas.edu/projections/


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA